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We discuss the existence of an orthogonal basis consisting of decomposable vectors for some symmetry
classes of tensors associated with certain subgroups of the full symmetric group. The dimensions of these
symmetry classes of tensors are also given.

1. INTRODUCTION

Let ¥V be a complex inner product space of dimension m. Let Q" V be the nth
tensor power of V' and write v; ® - -+ @ v,, for the decomposable tensor product of
the indicated vectors. To each permutation ¢ in the full symmetric group S, there
corresponds a linear operator P(¢) determined by

P(U)Vl@"'@Vn = VU—1(1)®“'®VU—1("). (1)
Let G be a subgroup of S,. Let y be an irreducible character of G. Define
e
160 =55 ¥ xPe) ©
geG

Let x1,...,xx be all the irreducible characters of G. It follows from the orthogo-
nality relations for characters that {T(G,y;):i=1,...,k} is a set of annihilating
idempotents which sum to the identity, i.e.,

T(G,xi)T(G,xj) = T(G,Xi)ij 3

and
Igny =T(G,x1) + -+ T(G, xk)- 4

Let y be one of the x;’s. The image of ®" V' under the map T(G, ) is called the
symmetry class of tensors associated with G and y and is denoted V) (G). The image
of vi®---®v, under T(G,y) is denoted vy *---*v, and is called a decomposable
tensor.

The inner product on ¥ induces an inner product on ®"V the restriction to
Vy(G) of which satisfies

(u1*"'*umV1*"'*Vn)=%dg(“l) )
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where
A = [(ui,vj)l (6)
and R
dS(4) = > x()[[ a0 @)
oceG =1

With respect to this inner product,

RV =Vu(G)& - 8V, (G) (8

is an orthogonal direct sum.

As in [4] let T, ,, be the set of all sequences a = (ay,...,a,) with 1< oy <m.
Define an equivalence relation ~ on I}, ,, by setting o ~ 3 if there exists § € G such
that a = 56 = (Bsq1y,---, Peny)- Let A be a system of distinct representatives of the
equivalence classes.

Let G, be the stabilizer subgroup of a, i.e.,

Ga={ceG:ar=a}. )
Define
Z:{aeA; Zx(a)#()}. (10)
0€Gq,

Let {e1,...,em} be a basis of V. Denote by e and e} the tensors e,m® - ®
€a(n)y aNd €1y * - -+ *€q(y), Tespectively. Taking the norm of e, with respect to the
induced inner product, one easily obtains the condition e}, # 0 if and only if a € A.
In particular, if {es,...,e,} is an orthonormal basis of ¥, we have

0 it atp

(earep) = X(©) S x(06) i a=g6 forsome geG (1D

|Cﬂ geG

s
For y€ A, let V., = (€%, : 0 € G) and Vr =T(G,x)(Vy) = (€%, : 0 € G). It fol-

lows that
(G =PV (12)
yeA

is an orthogonal direct sum. In [1] Freese proved that

dimVy = T(—G(f% > x(@). (13)

Y g€Gy

(If x is of degree one, then dimV} =1 for all 7 € A.) So from (12)

dimVy(G) = > % (Z X(a)> . (14)

yeA 7€Gy
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We have another expression for dimV, (G) [4]:

dimV,(G) = -)Té;—e[) > x(aym®® (15)
ceG

where c(c) denotes the number of cycles, including cycles of length one, in the
disjoint cycle factorization of .

In the subsequent discussion we assume that {ey,...,e,,} is a given orthonormal
basis of V.

Our first goal is the investigation of the existence of a subset S of I}, , for which
{e% : v € §} is an orthogonal basis of V,(G). The study is motivated by the work of
Wang and Gong [6]. The second goal is to figure out the dimension of the corre-
sponding symmetry classes of tensors.

In section 2 we study the case when G is a cyclic group. As an application, we
give a proof of Fermat’s “little” theorem.

In section 3 we study the case when G is a dihedral group.

In section 4 we turn our attention to the case that G is the alternating group A4
or the full symmetric group S;. Some open problems will be mentioned.

2. THE CYCLIC GROUPS
The subgroup G, of S,(n > 2) generated by the element

(1 2 - n-1 n)

r =

2 3 ... n 1

is the cyclic group of degree n. Since it is an abelian group, the irreducible repre-
sentations of C, are of degree 1. The n irreducible characters are given by (see [5],

p. 35)
M(rF) = e2mibk/n g =0, n-1. (16)

Since Ay is of degree 1, each V. has dimension 1 and hence V3, (G) has an orthog-
onal basis {e : v € A} by (11). The following theorem deals with dimV3, (G), i.e.,
the number of elements in A.

THEOREM 2.1 Let G = C,, and m = dimV. Then

1 n—-1 )
dlkah(G) = ﬁ ZeZ‘Kth/nmng(n,k), h= O, e H— 1
k=0

where ged(n, k) is the greatest common divisor of n and k and ged(n,0) = n.

Proof This follows directly from formula (15). The only thing we have to do is
to compute ¢(0) = the number of cycles in the cycle decomposition of ¢ (cycles of
length 1 are also included). Notice that (r*) has as many elements as the small-
est power of r¥ which gives the identity e. So the number of elements of (r¥) is
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n/ged(n, k). Hence we have
c(r*) = ged(n, k) amn

and the result follows immediately. |
We then have the following corollaries.

COROLLARY 2.2 Let m be an integer greater than 1. For h = 0,1,...,n—1,

1
CcOos
0

n—
1 2k scani)
n e n
is a positive integer and

n—-1

1 S sin 2mhk seank) —
n =0 n

Proof 1If v =(1,2,...,2), then G, = {e} and hence dimV; =1 by (13). So by
(14) dimV,,(G) > dimV} = 1. Separating the expression of Theorem 2.1 into real
and imaginary parts, we have the desired result. |

COROLLARY 2.3 (Fermat) If n is a prime number, then m” = mmodn for any inte-
ger m.

Proof Since (—m)" = —~mmodn we may assume m is nonnegative. Also, the
statement is clearly true if m equals 0 or 1 so that we may assume m > 1. By Corol-
lary 2.2, when h = 0, the number

1 n—1
2 et
n

k=0

is an integer. If n is prime, then ged(n,k)=1for k =1,...,n—1 and ged(n,0)=n
and hence

n-1

1
—ngcd(n'k) = l(m” +m+---+m)
n n
1 n
= ;((m —m) + nm).
Hence (m”" — m) is divisible by n. |

3. THE DIHEDRAL GROUPS
The subgroup D, of S,(n > 3) generated by the elements

1 2 -+ n-=-1 n 1 2 3 -« n—-1 n
r= ) and s=< )
(2 3 ... n 1 1 n n-1 - 3 2
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is the dihedral group of degree n. The generators r and s satisfy

n 2

=e=35 and srs=r"1

’
(see [2], p. 50). In particular, D, = {r¥,sr¥ : 0< k < n}.

For each integer A with 0 < h < n/2, D, has an irreducible character y;, of degree
2 given by

2whk
Xh(rk) =2cos p_— Xh(srk) =0 (18)

(see [5], p. 37). The other characters of D, are of degree 1. The character y, is
induced from the character A, of C, = (r) given in (16).

THEOREM 3.1 Let G=D,(n>3), let x =xn(0<h<n/2) and assume m=
dimV" > 2. There exists a subset S of Tym for which {eZ, : v € S} is an orthogonal
basis of Vy(G) if and only if n = 0mod4h, where h = hyhy with hy a power of 2 and
/’l2/ odd.

Proof Assume V,(G) has an orthogonal basis {eZ : 7 € S} consisting of decom-
posable symmetrized tensors. It will first be shown that x(¢) = 0 for some o € C,.

Lety=(1,2,2,...,2) and note that s € G, and G, N G, = {e}. Moreover, if srk e
G, with 0< k < n, then r* = s5r¥ € G, N C,, so that k = 0. Hence Gy={es}. It
is easy to check that

{rk=i sri*ky, it T=r, p=rk,
TGy = {srtk ki), i =l =ik,
{r=isritkyif T =sri, p=srk

In particular, [7=1GypN Cp| = 1 for all 7, € G. We have from (11) that

@i =5 5 xer

gEG,

=X—|éil) >, Xl

067—1677'
_Xx()
]GI aE'r-ZlGWLX((T)
= Zféif S x0) (19)

0ET1G, pNCy

If ¥ never vanished on C,, then it would follow that (€3,€%,) # 0 for each 7,1 €
G and, since dimV.* = 2 by (13), this would contradict that V5 has an orthogonal
basis of decomposable symmetrized tensors.

Therefore, 2cos(2mwhk/n) = x(r*) =0 for some k. In other words, 2whk /n =
(2¢+ 1)m/2 for some integer £. This implies 4hk = (22 + 1)n so that 4k, must di-
vide n.
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Conversely, assume n = 0mod4#h,. It will first be shown that if 7 € A, then Gy

is of the form H or HT where H is a subgroup of ("'} with n' = n/ged(n,h) and
T = (t) with 1 = e and 1 ¢ C,.

Set H = Gy N C, which is obviously a subgroup of C,. Recall that y equals the
induced character A® where A = A;. Denoting by Yz and Ay the restrictions to H
of y and A, respectively, Mackey’s subgroup theorem (see [3], p. 58) implies

X = =g + ()’
where (Ay)® is the character of H defined by
Aar) () = Au(s ™ xs)
= A(x™)
=Ag(x)7Y, xeH. (20)
Note that from (20), Ag = 1 if and only if (Ax)’ = 1. Now
Ar +Aa)’s Da = (X Dr

- ﬁzxm

oceH

= 2 )

g€Gy

#0,

since 7y € A, so it follows that Ay = 1.

If r* € H, then A(r¥) = 1, so 2whk /n = 2xf for some integer £. Therefore, h'k =
¢n' where h' = h/gcd(n,h). Since £/h' is an integer, r* ¢ (r”'). Consequently, H is
a subgroup of (r"').

Suppose G- # H. Then G contains some ¢ € G\ C,. In particular t?=es0T =
{e,t} is a subgroup of G,. Since H is a normal subgroup of G, HT is a subgroup
of G,. Also |HT| = 2|H|. Now C,G, = G, so by an isomorphism theorem G /H =
G/C, =1 /2Z. In particular, |G,| = 2|H|, so that G, = HT, as desired.

Let v € A. It will be shown that V¥ has an orthogonal basis {e}, : ¢ € K} where

e, r /4 s, s /4 if Gy=H,
_{{ } y 1)

T {e,r Yy if G,=HT.

Recall that yg = Ay + (Ag)® = 2- 1y so that y is identically 2 on H. Therefore,
it follows from (13) that if Gy = H, then dimVy =4 and if Gy = HT = HUH{1,
then dimV.f = 2. Consequently, it remains to be shown that {e}, : ¢ € S} con-
sists of mutually orthogonal vectors, and for this it is enough, by (19) to show that
x(171Gp) = {0} for each pair 7, € S with T # p.

First consider the case Gy =H. If 7€ C, and p ¢ G, then 771G,uNC, = ¢
so that x(771Gyp)={0}. If 7=¢ and p = r"'/4 or 7=5 and p=sr"/% then
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U Y = {r" (+4%9/4 . k ¢ 7} where € is 1 for the first case and —1 for the sec-
ond case. Now

W44 /4) = 9 o 2Thn'(1 + 4ke)/4
n

3 4k
s ¢! +2 ey

x(r

=2c
=0,

since A’ is odd. Therefore, x(7~1G,p) = {0} as G, is contained in (r*').

Finally assume Gy = HT = HUH? so that 7 1Gypu =7 HpOUr'Hep. If 7 =e
and g = r"/4, then x(r~'Hpu) = {0} by the preceding paragraph and y(r~1Hrp) =
{0} since TTHzpN C = ¢. Hence x(771Gyp) = {0}, as desired. ]

COROLLARY 3.2 [6] There exists a subset S of Ty, for which {el:yeS} isan
orthogonal basis of V,,(Dy).

Remark 1 In [6] Corollary 3.2 was obtained by the explicit construction of an
orthogonal basis of Vy,(D4). The purpose was to point out a false statement in [3].

Remark 2 The second half of the proof of Theorem 3.1 does not make use of
the given embedding of the dihedral group in the full symmetric group. In fact, it
shows that if G is any subgroup of §, isomorphic to D, for some £ > 3, then for
each 0 < h < £/2 satisfying £ = Omod4h,, there exists a subset S of T},,, for which
{e3 1y € S} is an orthogonal basis of V, (G).

We will say that @1 has an orthogonal basis of decomposable symmetrized tensors
if for each irreducible character y of G, there exists a subset Sy of Ty, for which
{e% : 7 € Sy} is an orthogonal basis of V,(G).

COROLLARY 3.3 Let G = D,, and assume that dimV > 2. Then Q"V has an or-
thogonal basis of decomposable symmetrized tensors if and only if n is a power of 2.

Proof Keeping the earlier notation, let n, denote the largest power of 2 dividing
n. Assume that n; < n. Then 0 < 1y < n/2 and n # Omod4n,. Therefore, if ¥ = yn,,
then Theorem 3.1 implies that there exists no subset Sy of I}, ,, for which {ey:7e
Sy} is an orthogonal basis for V, (G).

Conversely, assume n is a power of 2. If 0 < h < n/2, then hy < n/4 so that
n = 0mod4h,. Theorem 3.1 now implies that @”V has an orthogonal basis of de-
composable symmetrized tensors (recalling that the irreducible characters of G not
of the form Y, are all of degree one). |

If n is even, there are 4 irreducible characters of degree 1, given by the following
table: x

.
Y| 1
¥ | 1 1
(_
(_

| (CDF (D
Go | (<1F (DN
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If n is odd, then 9; and 5 are the only irreducible characters of degree 1.

THEOREM 3.4 Let G = D,(n > 3). Assume m =dimV > 2. Then

(2)

1 n—1
Zmn/z(m +1)+ % ngcd("’k) if niseven
k=0
dimVy, (G) =
1 1 n—1
Em(nﬂ)/?- + > Z mecd(nk) if nisodd
gy
(®
1 1 n—1
_Zmn/z(m +1)+ 5 ngcd(”vk) if niseven
k=0
dimVy,(G) =
1 1 n—1
_Em(n+1)/2 * 5 D meedeh) if nisodd
" =0
(c)
1 1 n—1
dimVy,(G) = Zm"/z(m -+ 7 Z(—l)kmg“i("k) if niseven
k=0
(d)
1 1 n—1
dimVy,(G) = Zm”/z(l —-m)+ o Z(—l)kmg“‘(”’k) if niseven
k=0
(©
, 2 21HK e n
dlmVXh(G)=;Zcos——n———m ", O<h<5.
k=0
Proof Notice that
(srk)2 = (srks)rk =rkk = e.

This implies that the cycles of sr* are of length either 1 or 2. Let (¢) be a cycle of
length 1 in s7*, i.e., sr*(£) = £ and hence r*(£) = s(£). So we have
k+f=n+2—fmodn if (#1
. (22)
k+i=1 if £=1

If n is even, then (22) has a solution £ if and only if £ is even. In this case, £=1
or {=(n+2)2ifk=0andf=(n+2-k)/2orL=02n+2-k)/2if k>0 If
n is odd, then (22) always has a solution £ = (n+2—k)/2 if k is odd or £ = (2n +
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2—k)/2if k #0if even and £ = 1if k = 0. The other cycles are of length 2. Hence
In+1+(-1)F) it niseven
c(sr’C =
I(n+1) if nisodd.

Then we have the desired result by (15) and (17). n

4. THE SYMMETRIC GROUP S; AND THE ALTERNATING GROUP A4,

The symmetric group Sy is the group of all permutations of a set {a,b,c,d} having
four elements. There are 5 conjugacy classes:

{e},

{(ab), (ac),(ad), (be), (bd), (cd)},

{(ab)(cd), (ac)(bd), (ad)(bc)),

{(abc), (ach),(abd),(adb), (acd), (adc),(bed),(bdc)}  and
{(abcd), (abdc), (achd),(acdb), (adbc), (adch)}.

Let x = (ab)(cd), y = (ac)(bd), z = (ad)(bc), and let L be the group of permuta-
tions that leave d fixed. We have the following character table (see [5], p. 43).

e (ab) (ab)(cd) (abc) (abcd)
xo| 1 1 1 1 1

1 -1 1 1 -1
6 2 0 2 -1 0
P |3 -1 0 -1
ep |3 -1 -1 0 1

EXAMPLE 4.1 There is no subset § of I, for which {e% : 7 € S} is an orthogonal
basis of V,(84) if m =dimV > 2.

Proof Tt is sufficient to show that there is a 4 € A such that V* does not have
an orthogonal basis among {e, : ¢ € S4}. Let v =(1,1,1,2). Then G, = L and by
(13),

e 3
dimV7F = z Z P(o) = 3.

g€EGy

Now S; = LH, so {e}, : 0 € S4} = {e}, : 0 € H}. By using formula (19), we have

*

the following table for the inner products (e,,e%).
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P\T | e X oy z
3 1 1 1
€ i 7§ "1 7%
1 3 1 1
S e S T S
1 1 3 1
Y 7% T 7 7%
-1 _1 _1 3
3 g 3 4
So it is impossible to find three orthogonal vectors among these four vectors. ||

The alternating group Aj is the group of even permutations of a set {a,b,c,d}
having 4 elements. There are 4 conjugacy classes in A4:

{e},
{x’y7z}7
{t,tx,ty,tz}, and

{2, 1%x,t%y, 122},
where
t = (abc), x = (ab)(cd), y = (ac)(bd), z = (ad)(bc).

‘We have
txt7l=z, tzl=y,  tytTl=x

and the following character table (see [5], p. 42)

e x t *
wil 1 1 1
x1| 1 1 w W
211l 1 w? w
v13 -1 0 0
with w = e2™/3,

EXAMPLE 4.2 There is no subset S of Iy, for which {e7, : 7 € S} is an orthogonal
basis of Vy(A4,) if m=dimV > 2.

Proof 1t is sufficient to find a v € Ty, such that V.; does not have an orthogonal
basis among {eZ, : o € A4}. Let v = (1,1,1,2). Then G, = {e,,¢*} and

e 3
dimV7} = 3 Z P(o) = 3.
0€GH

Moreover Ay = G,H where H = {e,x,y,z}, s0 {€}, : 0 € Ay} = {e}, 10 € H}.
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By using formula (19), we have the following table for the inner products (e

* TR
elr)-
p\T | e x y z
3 1 1 1
€ I i "1 7%
1 3 1 1
oI i S R S
1 1 3 1
Y |79 % 1 1
1 1 1 3
Z |73 —3 —1 1%
So it is impossible to find three orthogonal vectors among these four vectors. |

In view of the above examples, we conjecture that for G = S, or A4, n > 4, there
is a character x of G such that no subset S of I, exists for which {e% : y € S} is
an orthogonal basis of V, (G). (Notice that S3 = D3 and §; = D; = (3.)

References

[1] R. Freese, Inequalities for generalized matrix functions based on arbitrary characters, Linear Algebra
Appl. 7 (1973), 337-345.

[2] T. W. Hungerford, Algebra, New York: Holt, Rinehart and Wilson, 1974.

[3] M. Marcus and J. Chollet, Construction of orthonormal bases in higher symmetry classes of tensors,
Linear and Multilinear Algebra 19 (1986), 133-140.

[4] R. Merris, Recent advances in symmetry classes of tensors, Linear and Multilinear Algebra 7 (1979),
317-328.

[5] J-P. Serre, Linear Representations of Finite Groups, New York: Springer-Verlag, 1977.

[6] B. Y. Wang and M. P. Gong, A higher symmetry class of tensors with an orthogonal basis of decom-
posable symmetrized tensors, to appear in Linear and Multilinear Algebra.



